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Abstract. We present a single identity for the variety of all lattices that
is much simpler than those previously known to us. We also show that
the variety of weakly associative lattices is one-based, and we present a
generalized one-based theorem for subvarieties of weakly associative lattices
that can be defined with absorption laws. The automated theorem-proving
program OTTER was used in a substantial way to obtain the results.

1 Introduction

Equational identities are, perhaps, the simplest form of sentences expressing
many basic properties of algebras. Several familiar classes of algebras, such
as semigroups, groups, rings, lattices, and Boolean algebras, are defined by
equational identities. Such a class of algebras is known as an equational
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class of algebras or a variety of algebras (for mathematical properties of
such classes, see [3], [10], and [11]).

An equational theory T is said to be finitely based if it can be defined
by a finite set of identities. If an equational theory T is finitely based, we
may wish to determine the least number of equations needed to define the
theory T, in particular, to determine whether 7' is one-based. It is known
that every finitely based variety of lattices is two-based and that it is one-
based iff it is either the variety of all lattices or else the trivial variety of
one-element lattices defined by = y (cf. [7] and [8]).

This paper has two parts. First, we improve several results on the va-
riety of all lattices. In particular, we simplify McKenzie’s absorption basis
for lattice theory, present a reduction schema containing two unary func-
tions for single identities, and find a single identity for lattice theory much
shorter than those previously reported. Second, we show that the theory of
weakly associative lattices is one-based and that every subvariety of weakly
associative lattices that is definable with absorption laws is one-based.

The automated theorem-proving program OTTER [6] was used in a sub-
stantial way to obtain the results in this paper, and we present some of the
proofs found by OTTER. Because the practical use of automated theorem
proving is new and not widely known, we also indicate how OTTER was used.
In many cases, our goal was to find identities that have particular proper-
ties as well as to prove properties of identities; in some of those cases, we
used OTTER to generate a large set of candidates and ran OTTER searches
with members or subsets of the candidates. We stress that OTTER was not
used as a proof checker; rather, it searched for proofs, and we think of those
proofs as OTTER’s.

2 Single Identities for Lattice Theory

An absorption equality has a variable as one side of the equality symbol
and a term with at least one other variable as the other side. Most “nice”
varieties satisfy absorption laws, for example,

z— (2 —y)=y, in Abelian groups and rings,
zA(zVy)=u=x, Iinlattices.

In contrast, the variety of all semigroups does not satisfy any absorption
law.



If a lattice variety is one based, it must be definable by a single absorption
law, and as a prelude, we must have a basis consisting entirely of absorption
identities. The simplest previously known absorption basis for lattice theory
(in terms of A and V) was McKenzie’s [7], consisting of the four identities

yVv(zA(ynz)) =y, (1)
yA(zV(yvz)) =y, (2)
((xAy)V(yA2))Vy=uy, (3)
(VY A(yV2))Ay=y. (4)

McKenzie first constructed a single identity, containing 34 variables, for lat-
tice theory [7]; then G. Gritzer asked for a short identity defining lattices
[2]. Padmanabhan’s reduction schema [9], along with McKenzie’s absorp-
tion basis above, yields a single identity with just seven variables; however,
written without abbreviation, it has length 355 (where length is the count
of symbols, including variables, “A”, “V”, and “=", but not parentheses).

2.1 A Simpler Absorption Basis for Lattice Theory

The program MACE [5], which searches for models and counterexamples,
was used to show that McKenzie’s absorption basis (1)—(4) is independent.
The automated theorem-proving program OTTER [6] was then used to ex-
amine variants of (1)—(4) in which terms are commuted. After many OTTER
searches, it was discovered that the pair (1) and (4) can be replaced with
the following variant of (4):

(yva)A(yV2) Ay =y. (5)

Lemma 1 The set of identities {(2), (3), (5)} is a basis for the variety of
all lattices.

We list here an equational proof found by OTTER, starting with {(2),
(3), (5)} and deriving {(1), (4)}. The justification “m — n” indicates
paramodulation from m into n, that is, equality substitution, using (an
instance of ) m, into a subterm of (an instance of) n; “i, j, ...” indicates
simplification with 7,7, ...; and “flip” indicates that the equation is reversed
so that the more complex side is on the left.

Proof (found by OTTER 3.0.3d on gyro at 3.33 seconds).



3 tA(yV(zVvz)==z [(2)]
5 (Ay)V(yAz)Vy=y [(3)]
8,7 (evy)A(zVz)Ae = [(5)]
9 (zAy)Vy)Vy=y [3 — 5]
11 tA(zVy) == 5 — 3]
13 ((zAy)V(yA2)ANy=(zAy)V(yA2) [5 — 11]
2423 (zVyAhz==zx 3 — 7]
27 (zV(zAy)Vae=z [T — 5]
3029 azV(zAy)==a [7 — 13 :24,8, flip]
31 tVae=uz [27 :30]
3837 aA(yva)==a [31 — 3]
40,39 (zAy)Vy=y [9 — 23 :38, flip]
45 (zVy)Vz=2zVy (23 — 29]
55 sV(yve)=yVa [37 — 39]
67 (zAy)AN(zVy)=a Ay [39 — 3]
69 sV(yAhz)=z [39 — 45 :40]
106,105 ((zVy)A(yVz)Ay=y [55 — 7]
224 (zVy)V(zAy)=zVy (67 — 69]
677 tV(yn(zAhz)) =2 [29 — 224 :30]
Line 106 is (4), and line 677 is (1).
2.2 A New Reduction Schema
Padmanabhan’s reduction schema in [9] is
p(p(z,y,y), u, p(p(2,9,9), f(),2)) = v, (6)

where p is a majority polynomial. This is equivalent to the set

{p(ysy.2) =y, ply.2,9) =y, plx,y,9) =y, fy) =y} (7)

(To build a single identity for a theory satisfying a majority polynomial and
axiomatized with an absorption basis, say of size n, one can apply the lemma
in [9] » — 1 times, then substitute the result in the reduction schema.)

Lemma 2 The identity

p(p(x,y,y), p(x,p(y, 2, f(y)),9(y)), u) =y (8)



s equivalent to the set

Wy, x) =y, py.z,9) =y, p(x.y,9) =y, fly) =y, 9(y)=y}. (9)

Proof (found by OTTER 3.0.3d on gyro at 0.28 seconds).

4,3 p(p(@,y,9),p(z,p(y, 2, f(y)),9(y)), w) = y [(8)]
5 p(p(, (y,z Z),p(y 2)sp(, 2, 9(p(y, 2, 2))),u) = ply, 2, 2) [3 — 3]
7 p(p(z.y,y), p(z,p(z, (@/au f( )):9(9)),9(y)),v) =y [3 — 5:4,44]
10,9 p(p(p(z.9.9),9,9),y,2) = [3 — 7]
16,15  pla,z,y) == [9 — 9]
19,18 p(p(z,y,y),p(x,y,9(y)),2) =y [9 — 5:10,10,10]
22 p(p(x,y,y), p(x,p(2,9,9(¥)),9(y)),u) =y [15 — 7]
33,32 plz,y,9(y))=y [18 — 18 :19,16, flip]
40 p(z, (y,z fw)9(y)) =y [3 — 18 :4,16, flip]
42 p(p(z,y,y),y ,z) =y [22 :33,33]
44 ple,y, f(2)) = [42 — 40]
4746  plz,y,y)=1y [42 — 44, flip]
50,49  f(z) == [44 — 46, flip]
53,52 p(z,y,x) = [44 :50]
55 glz)==z [32 — 52, flip]

Lines 16, 47, 50, 53, and 55 establish one direction of the equivalence; the
other is established by inspection.

The reduction schema (8) was found by automatically generating can-
didate schemas with OTTER, then with each, searching with OTTER for a
proof of the preceding type.

With the new reduction schema, because we have f(y) =y and ¢(y) = v,
we apply the lemma of [9] n — 2 times instead of n — 1 times. With the new
lattice theory absorption basis of size n = 3, instead of n = 4, we can build
a single identity with just one application of the lemma. Using a variant of
the majority polynomial used to build the length 355 identity, we can build
a single identity of length 139, again with 7 variables, for lattice theory.

2.3 A Simpler Single Identity for Lattice Theory

The reduction schema (8) and the majority polynomial

Plr.y.2)= (@ A2V (yA (v 2) (10)



satisfy the three identities

(zAyV(zA(zVy)) =, (11)
(zhz)V(yA(zVa)) =z, (12)
(@AY V(yA(zVy))=y (13)

To simplify construction of a single identity (producing a shorter one), we
can use the fact that these identities are built in to the reduction schema. In
particular, if an absorption basis for lattice theory contains the above three
identities, those three identities need not be used in the construction of a
single identity.

Lemma 3 The absorption identities
((xAy)VyAz)Vy=y, (14)

((zV(yV2)A(uVy) Ay =y, (15)

union the three built-in identities {(11), (12), (13)} are a basis for the variety
of all lattices.

Note that (14) is the same as (3).

Proof (found by OTTER 3.0.3d on gyro at 0.82 seconds).

3 @ApV@EA(evy)=e (1)
5 (zhz)V(yA(zVa)) =z [(12)]
7 (@AY V(yA(zVy))=y [(13)]
9 (@Ay)V(yAz)Vy=y [(14)]
11 ((@V(yva)A(uVvy)hy=y [(15)]
14,13 avae==x [T — 9]
15 (zAz)V(yhz)==z [5 :14]
19 ((zAy)V(yA2)ANy=(zAy)V(yA2) [9 — 3 :14]
26,25 ahr=ua [13 — 7 :14]
27 tV(yhe)=u [15 :26]
31 (zV(zAy)Vae=z (25 — 9]
39 ((zVy ANEzVe)he =z [13 — 11]
41 ((zV(yV2) Ay ANy=y [13 — 11]
47 (xAy)Vy=y [27 — 9]
51 (zAN(yAhz))Vae=z [27 — 3 :26]



5453  (zAy)ANy=z Ay [47 — 3 :14]
56,56 (aV(yVz)Ay=y [41 :54]
57 (zV(zAy)Az=zV(zAYy) [31 — 3 :14]
877 (zVy Az =z [61 — 55]
79 sV(zAhy) ==z [57 :78, flip]
9493 zA(zAy)=xAy [3—>77]
99 (zVy)Vz=2zVy (77 — 79]
112,111 (z Ay)Vae ==z [79 — 3 :94,26]
115 (zhy)hNz=zx Ay [111 — 19 :112]
160,159 2z A(yV(zVz)) == [55 — 115 :56]
223222 ((zVyA(zVz)he =z [99 — 39]

Lines 9, 160, and 223 are (3), (2), and (5), respectively.

The pair (14) and (15) was found by automatically searching with many
candidate sets for proofs of the preceding type.

Theorem 1 The identity

(((@Ay)VyA@Vy))Az)V(((zA (1 AY) V(Y Az2))V

YV (A (21 V(g Va))A(z3Vy)Ay))V(uA(yV (16)

(@1 V(yVa))A(zsVy) Ay))) Az vV (((x1 @/) vV (yA
) VYDA (e AY)V(yA(zVy)))Vz))=

s a single identity for the variety of all lattices.

Proof. With (14) and (15), we need not apply the lemma in [9] to build
a single identity. With the reduction schema (8) we can simply substitute
(14) and (15) for f(y) and g(y). The result, written in terms of A and V, is
(16). (It has length 79, again with 7 variables.)

3 Weakly Associative Lattices

Here we prove that the variety of all weakly associative lattices (WAL) is
one-based. We then show that every finitely based subvariety of WAL that
is definable by absorption laws is also one-based.



3.1 WAL is One-based

We take as our starting point the following basis for WAL [1].

T Ahx =z, rVa=ua, (W1,W1")
T Ay=yAz, rVy=yVuz, (W2,W2)
((zV2)A(yVz)Az=2 ((xA2)V(yAz))Vz=z, (W3,W3)
(xVz)Az=z, (xA2)Vz=z. (W4,W4)

Clearly, (W4) follows from (W1) and (W3), and dually, (W4') follows from
(W1’) and (W3'); henceforth we omit (W4, W4’).

The ternary polynomial (10) is a majority polynomial for WAL as well
as for lattice theory. Therefore, if we can find an absorption basis for WAL,
we can construct a single identity for WAL. Since the built in identities
(11)—(13) hold for WAL, we can attempt the same sort of construction as
for lattice theory in Sec. 2.3.

With a sequence of OTTER searches, we tested many pairs of absorption
identities, adding each pair to (11)~(13) and attempting to derive the set
(W1, W1, W2, W2’ W3, W3'). OTTER succeeded with the pair

((zVy)A(zVa)Ahe =z, (17)

((zAy)V(zAz)) Ve =z (18)

Lemma 4 The set {(11), (12), (13), (17), (18)} is a basis for the variety of
all weakly associative lattices.

Because (17) and (18) are simply commuted variants of (W3) and (W3'),
it is sufficient to derive idempotence and commutativity of the two opera-
tions.

Proof (found by OTTER 3.0.3d on gyro at 2.51 seconds).

4 @AnvEAa(evy) =z (1))
6 (zhz)V(yA(zVa)) =z [(12)]
8 (xAy)V(gA(zVy))=y [(13)]
10 ((zVy ANEzVe)he =z [(17)]
12 ((zAy)V(zAz))Vae= [(18)]
14 (zA(yV(zAZ)))A(zAZ)=2A A2 [8 — 10]



16
21,20
24
27,26
30

34
45,44
47,46
48
63,62
64

70

74
89,88
95,94
106
114,113
116
119,118
123,122
128
131,130
134
136
141,140
142
144
152
172
179,178
180
189,188
194
198
200
212
216
236

(xVy)AN(zVa)Ve)) ==z

(zA((zA(yVa))Ve)) ==z
(zAhz)V(zAz)V(zAz)=a Az
((zAz)AN(yVa)he =z

ThNT =1

(zVvz)Ve=uz

tV(yAn(zVe)==z

rNVNr=u

tV(yne)=
(zA(((zVy)A(zVa))Ve))Ve==z
tA(yhz)=yAhz

sA(((zVy A(zVe))Ve)=z
sA((zhy)Va)=(zAy)Ve
tV((zA(yVve)Ve)==z
(zV(zVy)V(zVy =zVy
(@Ay)V(zAy))Vy=y
(xA(yVea)Ve==z
tA(yVae)=uz

V(yn(zVa))V(zVe)=zVa
zV(zVy)=zVy
TAyY)ANz =z Ay
tA(zVy) ==
(zVy)Ve=zVy
tV(zAy) ==

[4 — 10]
[10 — 8]
[10 — 12]
[12 — 10]
[24 — 8]
[8 — 26]
[26 — 34 :27,27]
[26 — 14 :27,27]
[30 — 14]

[8 — 46 :47]

[46 — 8]

[48 — 24]

[44 — 16 :45,45]
[24 — T4 :45]
[70 :89,89,89,89]
(6 :89

[88 — 20 :95,89
[106 :114

[20 — 4 :63,89
[116 — 14 :89

[116 — 4 :123,89

(128 — 4 :114
[26 :131

[20 — 64 :47,21,47,119, flip

]
]
]
]
]
]
]
]
]
(24 — 134]
[64 :141]
[134 — 24]
[122 — 12]
]

]

]

]

]

]

]

]

]

]

[142 — 136 :141
[172 — 4 :47,47,114, flip

[140 :179, flip
[178 — 116
[178 — 152

[144 :189

(180 — 4 :114

(198 — 4 :114
[212 — 116
[200 — 116



243242 (z Ay)AN(yAhz)=yAz (236 — 14

]
9%  aAy=yAz [242 — 200 :243,243]
288287 (zVy)V(yVae)=yVa [212 — 194]
349 aVy=yVa [287 — 216 :288,288]

Lines 89, 114, 286, and 349 establish the result.
Theorem 2 The variety all weakly associative lattices is one-based.

Proof. Using the reduction schema (8), we can construct a single identity for
WAL by substituting (17) and (18) for f(y) and g(y). The identity, written
in terms of A and V, has length 75 and 6 variables:

(( Ay Vg Al vy)))A2) V(A Aer) V(z2 Ay))V
YDV Uy Ay Va) Alea V) Ag) V(A (y Yy Vaon g
(z2Vy)) Ay)))) A (e V (((@/ Az V(zg Ay))Vy)))) A (((eA
YIVA(zVY)))V2)) =

3.2 Subvarieties of WAL

Let gWAL stand for the equational theory of all WALs satisfying a further
absorption law, say g(x1,2,---,2,) = x1. To find a single identity for
gWAL, we must embed the additional absorption law into a single identity
for WAL. The idea of embedding a unary function inside an identity goes
back to G. Higman and B. H. Neumann (see [4] where they prove that every
finitely based variety of group theory is one-based). Such a technique was
first applied to lattices by Padmanabhan in [8].

Theorem 3 The variety gWAL is one-based.

Proof. We use the reduction schema (8), which has two unary functions,

p(p(x,y,y), p(2, (Y, 2, f()),9(y)), u) =y,

and we write (17) and (18) as Wi(y) = y and Wy(y) = y. Using the
lemma in [9], we bundle the identities (17) and (18) as p(W1(y), Wa(y), z),
and substitute this for f(y); we keep g(y) as a place holder for the further

10



absorption law g(z1, 22, -, 2,) = 1. The resulting single identity, written
in terms of A and V (using the same majority polynomial as above) is

((eAy)VgA(aVy))Az)V((zAgy) VgAYV z)A
(z2Vy)) Ay Au)V((((yAz) V(m2AY)Vy) A((gV
) Az Vy))Ay)Vau)))) V(oA (y VgV a)A(z2V (20)
YDAy AV (((gAz) V(e Ay)Vy) Ay Vo)A
(x2Vy) Ay)Vu))))) Az Vgy))A((zAy)V (yAzV
YV z))=y.

The preceding single identity for gWAL has length 109 and 7 variables. Note
the two occurrences of g(y), which represent the further absorption law. If
a further set of absorption laws, instead of a single law, is added, the set can
be bundled, as above, with applications of the lemma in [9].

The theory of all lattices may be viewed as a weakly associative lattice
satisfying the additional absorption law

A (yV(zVz)) =z (21)
Lemma 5 {WAL, (21)} = {the two associative laws for A and V}.

Proof. Define 2 < y to mean x Ay = x. By the commutative law, < y and
y < z imply that 2 = y. Also, if 2 < y,thenzVy=(zAy)Vy=y. Let
x <yandy <z Then

tAhz=azAN(zVy)=azA(zV(zVy))=

and hence # < z. Therefore, the binary relation “<” is reflexive, anti-
symmetric, and transitive. Now, by the commutative and absorption laws,
x Ay is a lower bound of z and y. Let u be any lower bound of & and vy,
that is, let v < z, v < y. In other words, z = uV z and y = u V y. We have

ANzAy)=uA((uVa)AN(uVy)) =

by (W3), and hence v < 2 A y. In other words, & A y is the greatest lower
bound of the set {x,y}. Thus the meet operation “A” is associative. This
is where the mathematician becomes informal and jumps to the conclusion

(z Ay) Az =the glb. of {{z,y},2} =glb. of {z,y,z} =2 A (yA2).

The dual argument (after transitivity of “<”) holds for associativity of “Vv”.

11



(Lemma 5 was also proved by OTTER, but that proof is too complex to
present here.)

Therefore, as a corollary to Theorem 3, we have that lattice theory is
one-based (cf. [7], [9], and Sec. 2).

4 Open Questions

1. Are there single identities for lattice theory, WAL, or gWAL simpler
than the ones presented here (16, 19, 20)?

2. Is the variety of near lattices (NL) one-based? A basis for NL is the
following set:

rAhr =uw, rVr=u,
rTANy=yAzx, rVy=yVuz,
tA(zVy)=z, zV(zAy)=uz.

3. Is the variety of transitive near lattices (TNL) one-based? We have a
basis for TNL by adjoining the following pair to NL:

tA(yV(zVvz)=z, zV(yA(zAz))=uz.
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Appendix A

The programs OTTER and MACE are in the public domain and are available
through Internet by FTP. See the file

ftp://info.mcs.anl.gov/pub/0tter/README

for more information.

Several OTTER input files and the corresponding proofs are available
by FTP. These include input files for the OTTER proofs that appear here,
input files for the OTTER proof of Lemma 5, and input files that were used
to double check, directly, that (16), (19), and (20) are single identities for
lattice theory, WAL, and gWAL, respectively. See

ftp://info.mcs.anl.gov/pub/0tter/LT-WAL/README

for specific information on the input files.
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Appendix B

Figures 1, 2, and 3 are the single identities 16, 19, and 20, respectively,
displayed in two dimensions, with meet operations vertical, join operations
horizontal, and boxes instead of parentheses. The purpose of these figures
is simply to show the structure of the identities.

y u
X
X3y y X3y
X1 ||y
X y v [x2 y y y
y =
z P Y y
y || x2

X y
Z

Figure 1: LT Single Identity (16)
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y x1 y x1
X
X2y Y| x2 y
y || x2
y y
X y x1 ||y Y
yA[[x Y =y
. « y || X2 y
x|y
X y
z
yA[[*x Y
Figure 2: WAL Single Identity (19)
y \'
5 =L
X X2y s v Il X2 Y T
< v 9(y) » y X » y X
vl x v " x2 y|[|Y " x2 yl|||Y
S y y

X
y

y

Z

16

Figure 3: gWAL Single Identity (20)



